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ABSTRACT 

According to Gro thendieck  Dual i ty  T h e o r y  [RD], on each variety V over 

a field k, there  is a canonicM complex of O y - m o d u l e s ,  the  r e s i d u e  c o m -  

p l e x  /C~ D" --~ 7r!k. T h e s e  complexes  sat isfy  (and are  character ized by) 

functorial  proper t ies  in the  ca tegory  V of k-varieties. In [Ye] a complex  

K: y is cons t ruc ted  explicit ly (when the  field k is perfect) .  T h e  ma in  re- 

sul t  of  this  paper  is t h a t  the  two families of complexes ,  { / ~ D ' } V E V  and  

{1Cv}VEV, which car ry  cer ta in  addi t ional  d a t a  (such as t race  maps . . . ) ,  

are uniquely  isomorphic.  As a corollary we recover L i p m a n ' s  canonical  

duMizing sheaf  of [Li], and  we ob ta in  formulas  for res idues of local coho- 

mology classes of differential forms. 
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0. I n t r o d u c t i o n  a n d  S t a t e m e n t  of  Resu l t s  

0.1 INTRODUCTION. This paper is yet another step in the program, begun by 

J. Lipman, E. Kunz and others, to give a concrete realization of the Grothendieck 

Duality Theory. In [Li] we find a realization of the dualizing sheaf in the absolute 

setting: varieties over a perfect field. With the recent papers [HK1], [HK2], 

[LS] and [HS], one may regard the program, in its restricted version of relative 

dualizing sheaves for dominant equidimensional morphisms (over a wide class of 

base schemes), as complete. 

This is hardly the case for the full theory of dualizing complexes. Here we only 

have a concrete realization of absolute duality, namely the Grothendieck Residue 

Complex ]C X of [Ye]. Let k be a perfect field. In [Ye] Appendix it was shown 

that  for a proper k-variety ~r: X ~ Spec k, the pair (K:x, Try) is a residue pair 

(cf. §0.2), so it is a realization of the pair (~r~k, Try) of [RD]. Missing from this 

realization is the connection to differential forms. Borrowing from the language 

of [Li] §0, what we find in [Ye] Appendix is an account of the dualizing structure 

on/Cx,  whereas [Ye] §4 gives an account of the canonical structure on it. The 

main result of the present paper connects the two structures. 

At the same time we recover Lipman's canonical dualizing sheaf & of [Li]. 

Suppose dim X = n. From [Ye] Thm. 4.4.16 we know that the sheaf or regular 

differentials &x satisfies &x = H -n/Cx C K x ® ~n X k' where K x is the constant - -  / 

sheaf of meromorphic functions. Let ~/x: &x[n] --* /C x be the corresponding 

homomorphism of complexes. Let t~x: Hn(X,&x) --* k be the trace map of [Li] 

Whm. 0.6 (d). We prove that  ~x = (-1)~ Tr~ oH°a~r . (~x)  • 

An intriguing problem, posed to us by S. Kleiman (private comm.), is to explain 

the relation between local cohomology residues (residue symbols) and Parshin 

Residues. We solve this problem here, using the methods of semi-topological rings 

and Beilinson completions. Lipman, in a private communication, conjectured a 

formula for the canonical map H~(7/x): H~(hJx) ~ K~(x), where x e X has 

codimension c, and/C(x) = H~-n(K:x) is the dual module of [Ye] Def. 4.3.10, a 

formula which we prove. The proof is based on coboundary calculations in the 

Koszul-residue double complex. 

The results mentioned in the two preceding paragraphs have been obtained 

independently by R. Hiibl [Hu2], for the most part only for Cohen-Macaulay 

varieties. Interestingly, the route taken by Hiibl is almost the opposite of ours. 
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0.2 STATEMENT OF RESULTS. Let X be an n-dimensional variety over the 

perfect field k, with structural morphism ~r. Consider the following three objects 

associated to X: 

1. The complex K~Rx D := 7rZXk (see [RD] Ch. VI). It is a residual complex on 

X (Def. 1.1.1), concentrated in the dimension range f -n ,  0]. 

2. The sheaf of regular differential forms COx of Kunz (see [Ku] p. 68). This is 

a coherent subsheaf of the sheaf of meromorphic differentials K x ® fl~/k" 

3. The residue complex £'x of [Ye] Thm. 4.3.20. This too is a residual com- 

plex on X, concentrated in the dimension range f -n ,  0]. In dimension - n  

one has )~x n = K x ® a~:/k. 

The second and third objects are easily related: cox = H -~ ~ x  as subsheaves 

of __K x ® a ) / k  (el. [Ye] Thm. 4.4.16; or cf. Example 1.3.3 and [Li] Cor. 2.3). 

Hence there is an induced homomorphism of complexes 

[n] 

which is a quasi-isomorphism iff X is a Cohen-Macaulay scheme (cf. [Ye] Cor. 

4.5.7). The main result of this paper, namely Thm. 0.2.3 below, provides a 

natural isomorphism of complexes/C x ~- ERD. on any variety X. 

Let F be the category of k-varieties, and let Fz~r be the subcategory with 

the same objects, but with open immersions as its morphisms. In §1 the notion 

of a residue complex on l) is defined. It consists of a residual complex TC = 

{TCx}xev on 1;Z~r, together with a dualizing structure {Ox} and a canonical 

structure ({Tx }, {0f}), which are compatible with each other. These definitions 

are adapted from Lipman's corresponding definitions for sheaves; of. [Li] §0. We 

prove: 

THEOREM 0.2.1: (Rigidity) Let (Tt', {Ox}, {~/x}, {Of}) and (7~", {0~(}, {7~:}, 

{0)}) be two residue complexes on F. Then there exists a unique isomorphism 

of complexes on IZz~r, ,~: 7Z" ~ 7~", which respects the dualizing structures and 

the canonical structures. 
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Observe the similarity to Thm. 0.3B of [Li]. 

One residue complex on V is gotten from the pseudo-functor A of [RD] Ch. 

VI. Given ~r: X ~ Speck in V, set/CRx D" := 7r/Xk, a residual complex on X. The 

variance data of ibid. Thin. 3.1 make/C RD" = {/C RD "}xev  a residual complex on 

Vz~r. From ibid. Thm. 3.1 and Thm. 4.2 we obtain families of homomorphisms 

{0xRD}, {'7 RD} and {0~D}. 

PROPOS,T,O  0.2.2: {0}D}, is a  esid,,e complex on V. 

Next, consider the residual complex /C" = {1C'x}x6 v on VZar, where for a 

variety X, /C x is the complex of [Ye] §4.3. Let {Try}, {Cx} and (Trf} be the 

maps defined in [Ye] §4.4 and 4.5. The main result of the paper is: 

THEOREM 0.2.3: (/C', {(--1) dimX Try}, {Cx}, {Try}) is a residue complex on 

V. 

Remark 0.2.4: In lye], Appendix it was essentially proved that the dualizing 

complexes ({/C~ D "}, {0RD}) and ({/Cx}, {Try}) are isomorphic. 

Remark 0.2.5: It is somewhat disconcerting that the two residue complexes men- 

tioned above, viz. ](~RD" and 1C, have complicated constructions running into 

many pages in [RD] and [Ye], respectively. In Example 1.2.5 and Remark 1.4.2 

we indicate a more accessible approach to the existence of dualizing and residue 

complexes on V. 

The equality of sheaves &x = H-dim X K~ X on any variety X makes & = 

(wx  } x e v  into a sheaf on Vz,r. A direct consequence of Theorem 0.2.3 is: 

COROLLARY 0.2.6: The data 

(~D, {(-1) 41rex Tr~ oH ° R~r,(~/x)}, {H- dim X(r/X 1 o Cx)}, {H-dlmX (Trf)}) 

is a canonical dualizing O-module; i.e. it satisfies the conditions of [Li] Thm. 

0.3B. 

The uniqueness part of [Li] Thin. 0.3B implies: 

COROLLARY 0.2.7: Suppose X is proper of dimension n over k. Let 

OX: Hn(X ,~x )  = H°(X,5~x[n]) ~ k 

be the the trace map of [Li] Thin. 0.6 (d). Then 

0x = ( -1)  n Tr~ oH°RTr.(,/x). 
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The proofs of the statements above are in §1.4. The proof of Thm. 0.2.3 breaks 

down into a global part, involving categories and functors, and a local part, whose 

essence is Theorems 0.2.9 and 0.2.10 below. These theorems are of interest on 

their own. 

Let x E X be a point of codimension c, and let a: K --* Ox ,x  be a pseudo- 

coefficient field (i.e. [ k ( x ) : K ]  < oc). In [Hu2] Def. 1.1 the residue map 

~n--c 
ReS©x,~/K,ra~ : HC(c3X) --* h'/k 

LC LC is defined (cf. ibid. Remark (ii)). Let us denote this map by Resx, K = Resx,o. 

When x is a closed point (or equivalently, when [K : k] < oc), this is the well 

known residue map; cf. [Li] §7. The generalized fraction notation (cf. [Li] §7 and 

[HK1] §3) shall be used to represent local cohomology classes. 

Remark 0.2.8: The generalized fraction notation used in [LS] differs from the one 

used here (i.e. that of [Li] §7) by a factor of (-1)~; cf. [Sa]. 

Suppose t = ( t l , . . . , t ~ )  is a system of parameters in (gx,~. Given a chain 

= (x0 , . . . , x~)  of points in X, we write ~](x;t) if x~ = x, and if t~(xi) = 0 

for i = 1 . . . .  ,c. Here t i (x i )  is the class of t/ in the residue field k(x i ) .  Such a 

chain is necessarily saturated, and there are only finitely many of them. Also 

note that  x0 is the generic point of X, and that t i ( x~- l )  ~ 0 for all i. Let 

Res¢,K = Res¢,o : ft* k(X)/k ~ ~* k(x)/k be the Parshin residue map of lYe] §4.1. 

T H E O R E M  0.2.9: (Cf. [Hu2] Cot. 2.5.) Let t = ( t l , . . . , t ¢ )  be a system of  

parameters in O x , , .  For any regular differential form a ~ &x,~, 

ReSx'K t l , . . . , t c  ' t l  - tc 
~l(x;t) 

i .  

The proof of the theorem is in §3.2. This solves the problem posed by 

S. Kleiman, regarding the relation between the two types of residues. 

Recall that  for every q, K:x q = t ~ y e x  q/C(y), where 

Xq := {y C X I dim{y}- = q}~ 

and t~(y) is a skyscraper sheaf supported on {y}-.  Hence there is a canonical 

isomorphism of Ox,y-modules K(y) ~ H ~ q ( ~ ) .  If ~ = (x0 , . . . ,  xc) is a chain 
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of points as above, then K;(Xo) = k (X )  ® ~x/k" Let 6~: ~(xo) --+/C(xc) be the 

coboundary map of [Ye] Def. 4.3.10. 

THEOREM 0.2.10: Let t = (tl . . . .  , to) be a system of parameters in Ox,~. For 

any regular differential form a E wx,~ one has 

([o]) (o) 
H~(~x) 

t I , . . ,  tc E ~ 1 - ' t c  
' ~ l ( x ; t )  

c - - n  • in H~(/~x[-n]) = H~ (/Cx) = / Q x ) .  

The proof of this theorem is in §2.3. 

Suppose a: K -~ (9x,¢ is a pseudo-coefficient field. There is a canonical iso- 

morphism of Ox,~-modules (see [Ye] Def. 4.3.10 and Remark 4.3.17): 

(I)o-: K:(o-) cont  ^ n - - c  ~-- = HOmE (Ox,x,f~Kik) --* 1C(X). 

Putting Theorems 0.2.9 and 0.2.10 together, we 

description of the map Hi(r/x), up to a sign: 

COROLLARY 0.2.11: (Cf. [Hu2] Thin. 2.2) Let a: 

coefficient field. Then the homomorphism 

get Lipman's conjectured 

K ~ (flx,~ be a pseudo- 

n ~ ( ~ x )  H;( ,x)  ~ ( x )  *;-~ , , tc(, ,)  

is given by 

c Resx, K ; a E Ox,x. 

Observe that this corollary directly implies Cor. 0.2.7. 

Remark 0.2.12: It is not hard to extend most results of this paper to reduced 

equidimensional schemes of finite type over k. For the sake of clarity of the 

presentation we restricted ourselves to varieties. 

1. Globa l  Calcula t ions :  Sheaves of  O-Modu le s  o n  ~ Z a r  

1.1 RESIDUAL COMPLEXES ON YZ~r. Let k be a perfect field, and let V be 

the category of varieties over k, i.e. reduced, irreducible, separated k-schemes of 

finite type. Let Vz~r be the subeategory of V having the same objects, and having 
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open immersions as its morphisms. We recall the notion of an O-module o n  ~])Zar 

from [Li] pp. 28-30. Briefly, Yz~r is a Grothendieck topology (with the obvious 

notion of a cover), and we may speak of a sheaf on this site (a contravariant 

functor to Sets, satisfying the usual conditions for a presheaf to be a sheaf). 

Let O be the sheaf on PZ~r given by V ~-, F(V, Ov) .  Then O is a sheaf of 

rings, and one defines a sheaf of O-modules on PZ~r in the obvious way. The 

O-modules on Yz~r form an abelian category. This category is equivalent to the 

category whose objects are families of Or -modules  {J:v}vev,  together with an 

isomorphism ¢/9: g *2:V ~ JZu for every open immersion g: U ---, V, satisfying 

/~h~ = fi~ o g*(/3h) for every g g,  V h, W. 

An O-module 7- is said to be coherent (resp. quasi-coherent) if ~ v  := $-Iv is 

coherent (resp. quasi-coherent) for every V; here 9rv is an actual sheaf on V. If 

and G are two O-modules, their tensor product 9 c Go  G is the O-module s.t. 

for every V, (7-®o ~)]v = 2:v ®Or Gv. Given a complex ~" of O-modules, each 

eohomology Hq() c'') is also an O-module. 

Here are three examples of O-modules: 

dim V 1. ~dim is the sheaf V ~ F(V, ~v/k  )" 

2. & is the sheaf V ~ r(v, ~v). 

3. K is the sheaf of meromorphic functions, V ~ k(V). 

The sheaf K is a constant sheaf, and by definition K Go  ~'~dim : / (  GO o~ as 

O-modules. Formally, one may consider dim as a section of the constant sheaf Z 

on Yz~r, taking the value n on the subcategory ~]]~ar of n-dimensional varieties. 

In [RD] eh. VI §1 we find the following definitions. Let X be a locally noethe- 

rian scheme. For a point x E X,  let I be an injective hull of k(x) as an Ox,x- 

module, and let J(x) be the skyscraper sheaf which is I on the closed set {x}-  

and 0 elsewhere. Then J(x) is a quasi-coherent, injective Ox-module .  

Detinition 1.1.1: (Cf. [RD] Ch. VI §1 Def.) A residual complex on X is a com- 

plex T/" of quasi-coherent, injective Ox-modules,  bounded below, with coherent 

cohomology sheaves, and such that  there is an isomorphism of Ox-modules  

pEZ x 6 X  
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Definition 1.1.2: A complex 7"4' of O-modules on Vz~r is said to be r e s idua l  if 

7"4 y := TC Iv is residual for every V E V. 

Example 1.1.3: According to [Ye] Prop. 4.4.1, the family of complexes {K: x }xEv, 

together with the isomorphisms (.y~)-l: g*K:~ -% K; X for every open immersion 

g: X --~ Y, forms a complex of O-modules on VZ~r. By ibid. Cor. 4.5.6, this is in 

fact a residual complex, which we denote by tC'. 

1.2 DUALIZING STRUCTURES. Suppose V E V is proper, with structural 

morphism ~-. As in lye] Appendix, we say that a pair (TCv, Or) is a r e s i d u e  

pa i r  if 74 b is a residual complex on V, and if Oy: F(V, TOy) --* k is a map of 

complexes, such that for any $'" E Dqc(V), the k-linear homomorphism 

H o m D ( v ) ( F  , T¢v) ~ HomD(k)(R~r.~',  k) 

induced by Ov is an isomorphism. 

Given a variety V, let V e := {x E V 1 dim{x}-  = q}. Consider the decreasing 

filtration V" = {. . .  D V -2 D V -1 D V0}, called the dimension filtration, with 

V-P := Uq<p Vq. If (Tiv, Or) is a residue pair on V, then by taking ~-" = k(x) 

for any closed point x E V, we see that  ?'4 y is a Cous in  c o m p l e x  with respect 

to the filtration V'. This means that TOy q ~ (~xEYq T¢(x), where for x E Vq, 

?'¢(x) is the skyscraper sheaf with support {x}-  and group of sections H;q(TCy) 

(cf. [RD] Ch. IV §3). 

LEMMA 1.2.1: Suppose 

(1.2.1) 

U g , V 

h U , W 

is a commutative diagram of morphisms in V, with g, h open immersions and 

with V, W proper over k. Let (TCv, Or) and (R.w, Ow) be residue pairs on V 

and W, resp. Then there exists a homomorphism of complexes of Ow-modules 

Oi: f , R  v -+ R'w, such that the diagram 

p , f ,  T4. v p,(Of), 

(1.2.2) 

P*P'-w 

Ov 
7r.TG, ' k 
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commutes. Here 7r: V ~ Speck and p: W ---* Spec k are the structural mor- 

phisms. Moreover, the pullback homomorphism h*(0y): h*f.74 y --* h'74 W is 

unique. 

Proof" The existence and uniqueness of a morphism [Of] in the derived category 

D(W) which makes the diagram (1.2.2) commute is a direct consequence of the 

fact that  (74w,0w) is a residue pair. According to [RD] Ch. I Prop. 4.7, be- 

cause 74w is a complex of injective Ow-modules, [0f] is represented by an actual 

homomorphism of complexes, say Of. Now f*74v needn't  be a Cousin complex 

on W, w.r.t, the dimension filtration W'.  However, since the diagram (1.2.1) 

is cartesian, we have h*f.74" y = g*74"v. The complexes h'f .74'  y and h'74 W are 

Cousin complexes on U, so we can use [RD] Ch. IV Lemma 3.2 a) to conclude 

that h*(Of) is the unique representative of h*([Of]). | 

Example 1.2.2: Take W := A 3, let P E W be the origin, and let U := W - {P}. 

Let f :  V --* W be the blow up of W along {P}. Then F_{p}(f,74v) is a complex 

concentrated in dimensions - 2 , - 1 ,  0, so f*74v is not a Cousin complex. 

The following definition is modelled on the definition of a dualizing O-module 

of [Li] Def. 4.1. 

Definition 1.2.3: Let 74" = {74v} be a residual complex on Vz~r, and for each 

open immersion g: U --* V, let/3~: g*74v ~ 74}y be the restriction isomorphism. 

A dua l i z ing  s t r u c t u r e  on 74" is a family of maps of complexes 

Or: r(v, nv) k, 

one for each proper k-variety V, such that: 

(i) The pair (74v, 0v) is a residue pair. 

(ii) Given a commutative diagram of morphisms (1.2.1), the homomorphism of 

complexes h*(0y): h*f.74" v ~ h'74 W of Lemma 1.2.1 makes the following 

diagram commute: 

h. f .74 y h*(O$), h*74w 
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We call (TC, {Ov}) a dualizing complex on V. 

Example 1.2.4: Let 1C" be the residual complex of Example 1.1.3. Consider the 

family of maps Tr~ : ~r,/C x --* k of [Ye] Thm. 4.4.14, where for each X proper 

over k, ~r: X --~ Speck is the structural morphism. According to [Ye] Appendix 

Theorems 1 and 3, (IC', {Try}) is a dualizing complex on V. 

Example 1.2.5: Here is an outline of much quicker construction of a dualizing 

complex on V. Suppose for each proper variety X, with structural morphism lr, 

we have a dualizing pair ( I x , ¢ x ) ,  i.e. a complex I X 6 D+(X) and a morphism 

Cx: RTr , Ix  ~ k in D(k), which represent the functor •" ~-~ HOmD(k)(RTr,hr" , k) 

on Dqc(X). It follows that  I x is a dualizing complex on X (in the sense of [RD]), 

so the associated Cousin complex 7~ X := E(:Ix) is a residual complex (cf. [RD] 

Ch. VI Prop. 1.1), and we get a residue pair ( ~ x ,  Ox). 

It is possible to find a residual complex T/" on Vzar such that  7~" Ix = ~ x  for 

X proper, and such that  (7~', {0z}) is a dualizing complex on V. This may be 

achieved by following [Li] pp. 40-47, mutatis mutandis; e.g. replacing Prop. 4.3 

of loc. cit. by [Ve] Thin. 2, esp. the proof of case 1 of this theorem. 

As for getting a dualizing pair (Zx, Cx)  on a proper variety X,  this can be done 

in the following way, which is implicit in no. 4 of Deligne's appendix to [RD]. For 

an affine open subscheme g: U = Spec B ~-* X, let I be the quasi coherent sheaf 

on U corresponding to the B-module HOmk(B, k), and let I g  := g,Z. Then Zu 

is a quasi coherent injective Ox-module.  Choose a finite open affine cover {U~} 

of X. For p 6 N define 

IX p := ~ ~ r U i o n n U ~  p • 

io<'"<i~, 

Then I x is a complex in a natural way, and there is a homomorphism Cx: ~r,~x 

-~ k, arising from the evaluation at 1 map: Homk(B, k) -* k. It is easy to see 

that the pair ( I x ,  Cx)  represents the aforementioned functor. A more subtle fact 

is that  Z x 6 D+(X),  i.e. that  it has coherent cohomologies; this follows from the 

"local nature of 7r ~'', cf. [RD] Appendix no. 5, or [Ve] Lemma 1. 

PROPOSITION 1.2.6: Let ( Tt', {0y}) and (7~", {0~}) be two dualizing complexes 

on V. Then there is a unique isomorphism of complexes A: 7~" ~ Tt'" which is 

compatible with the dualizing structures. By this we mean that for each proper 
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variety V in V, the diagram below commutes: 

x". r(v,n'i ) 
[0v 
k * k 

Proof'. For V proper define Av so as to make the diagram above commute. If 

g: U ~ V is an open immersion, with V proper, define Au := 3~ o g*(Av) o/~1.  

One checks, using the proof of [Ye] Appendix Thm. 3, that Au is independent of 

the eompactification g. In general, any variety W is covered by compactifiable 

open sets, W = Ui Ui; as shown in loc. cit. Exercise, the isomorphisms Au, glue 

to give Aw. We point out that  in this manner it is possible to bypass Nagata's 

difficult theorem on compactifications in [Na]. | 

1.3 CANONICAL STRUCTURES.  We introduce the notion of a canonical struc- 

ture on a residual complex of O-modules, along the lines of [Li] Def. 2.1. Denote 

by v~mr the full subcategory of Vz~r consisting of smooth k-varieties. 

Definition 1.3.1: Let TC be a residual complex on Vz~r. A canon ica l  s t r u c t u r e  

on TC consists of the following data: 

(a) A quasi-isomorphism of complexes of O-modules: 

i.e. for each smooth variety V of dimension n, a quasi-isomorphism 
n n ~/v: f~v/k[ ] --* 7~v, compatible with open immersions. 

(b) For each finite, generically 6tale morphism f :  V ~ W in V, a homomor- 

phism of complexes of Ow-modules 

Of: f,T~v ~ T~ W. 

These data are required to satisfy the conditions below, for any morphism f :  V --~ 

W as in (b). 

(i) Of induces an isomorphism of complexes f ,  Tt" y -~ Homw(f ,  Oy, Tiw). 
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(ii) Let g: V sm - - ~  V be the inclusion of the smooth locus, and let v E V sm C V 

be the generic point. Say V has dimension n. Then 3'Vsm induces an 

isomorphism "/v,~,: fP~k(v)/k -=-* T4v, ..-'~ The same happens on W, which has 

generic point w. The condition is that the diagram below commutes: 

"/U,~ - n  

ftn 7W, w -~ 
k(w)/k " IZw, w 

We call (T4", {Tv}, {Of}) a canonical complex on 12. 

Observe that if TO" admits a canonical structure, then on any variety V,/'4 v is 

a Cousin complex w.r.t, the dimension filtration V'. 

Remark  1.3.2: If (/-4", {Tv}, {0I}) is a canonical complex on 12, then (H- dim 7C, 

{H-dim(Tv)},{H-dim(0/)}) is a canonical O-module, in the sense of [Li] Def. 

2.1. It follows that under the isomorphism of O-modules K ®o f~dim ~ lP~- dim 

induced by {Tv}, we have cb -% H-dim 7~'. 

Example 1.3.3: Consider the residual complex/C" of example 1.1.3. The quasi- 

isomorphisms C x :  fPx/k[n] --+ K.'x, for X smooth over k, and the trace maps 

Trf :  f.K; x --+ /(;~, for f :  X --+ Y finite, of [Ye] §4.4 and 4.5, are a canonical 

structure on/C'. This is evident from the definition of maps Trf. 

PROPOSmON 1.3.4: (Of. [Li] Cor. 2.3) Let (?Z' ,{Tv},{O;})  and (g",{7~¢}, 

{0}}) be two canonical complexes on Y. Then there exists a unique isomor- 

phism of complexes of O-modules A:/-4" -% TO", compatible with {Tv} and {7~ }. 

The isomorphism A is also compatible with {0i}  and {0}}. 

Prook For W smooth set Aw := 7~v o (7w)-1; this is possible since (Tw) - I ,  a 

priori only defined in the derived category D(W), is actually a homomorphism of 

complexes (el. [RD] Ch. IV Lemma 3.2). If f :  V ~ W is a morphism as in (b), 

denote by 7} the isomorphism/'4 v -% fbT/w induced by 0i; here fb is the functor 

of [Ye] Def. 4.4.2. Set .Xv := (7}b)-i o 7}. Since EndD(v)(T~b) = r (v ,  Oy)  C 

k(V), we see that  Av is completely determined by its action on the generic stalk 

n (n = dim Y). T4v n ~- ftk(V)/k 

Now suppose W' C W is an open subset such that,  setting V' := f - l ( W ' ) ,  

the morphism f '  := f lv ' :  V'  --* W '  is 6tale (and finite). Then V' is smooth over 
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k. Condition (ii) implies that the two definitions of Av, - the intrinsic one, and 

the restriction Av[y,, coincide. This, and the fact that Av is determined by its 

action on the generic stalk ~ ( v ) / k ,  show that Av is independent of f .  

For the general case, cover V by open subsets {V~}, such that each V~ admits 

a finite, generically 6tale morphism to some smooth W~. One may take {V~} to 

be any affine cover, and W~ = A~; cf. [Ma] Remark on p. 90, or [Li] Appendix 

A. By the above arguments, the resulting isomorphisms Av~ patch. | 

1.4 RESIDUE COMPLEXES ON ]2. 

Definition 1.4.1: A res idue  c o m p l e x  on Y is a residual complex TO" o n  ~Zar,  

together with a dualizing structure {0v} and a canonical structure ({'~v}, {Of}), 

satisfying the following conditions: 

(a) (Compatibility) For any finite, generically ~tale morphism f:  V -* W 

between proper k-varieties, the diagram below commutes: 

HO (W, f ,T/v ) O,f, HO(w, 7¢w ) 

1= l 
HO(v, T~V) Ov , k 

(b) (Normalization) For any n > 0, let P := P~, and let fp  : H ' ( P ,  ~ / k )  X 

k be the canonical projective trace map of [Li] Prop. 8.4. Then 

0p O Hn(p,  7P) = / p .  

Given a variety X over k, with structural morphism ~r, set ~ D .  := wAk, where 

(_)z~ is the pseudo-functor of [RD] Ch. VI. The variance data of ibid. Thin. 3.1 

make K: RD" : { ] ~ R D ' } x e F  into a residual complex on ]?z~r. For X smooth of 

dimension n over k define 7xRD: ~X/k[n] ~ h: RD" using the morphism ¢~ of ibid. 

Thm. 3.1 d). For f:  X ~ Y finite and generically ~tale, define 0yD: f. /C~ D" 

/Cy RD" using Try of ibid. Thm. 4.2. For X proper define 0RD: ~r . ]~  D' ~ k using 

Try; this is a homomorphism of complexes by ibid. Ch. VII Thm. 2.1. 

Here are the proofs of Prop. 0.2.2, Thm. 0.2.3 and Thm. 0.2.1: 
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Proo£" (of Prop. 0.2.2) (/C RD', {0~(D}) is a dualizing complex on V, according 

to [RD] Ch. VII Thm. 3.3 and Ch. VI Thin. 5.6. 

Let us show that (KRD., {~/xRD}, {0}~D}) is a canonical complex. Condition 

(i) of Def. 1.3.1 follows from [RD] Ch. VI Thm. 4.2 condition T R A  2. As for 

condition (ii), let f :  X ~ Y be finite and generically ~tale. By restricting 0} ~D 

to a smooth open subset U C Y s.t. f l f - l (u)  is 5tale, we may assume that Y is 

smooth over k (say, of dimension n) and that f is ~tale. By [RD] Ch. VI Thm. 
~,~n ,-o 3.1, Ch. III Cor. 8.3 and the subsequent remark, it follows that  Trf : f ,  x /k  = 

f .  H - "  E~  D ~ gt)/k ~ f ,  H -n  t~ RD" is induced from the "classical" trace map 

Try : f . O x  ~ Oy. Passing to generic stalks we deduce condition (ii). 

The compatibility condition (a) of Def. 1.4.1 is a consequence of the transitiv- 

ity of the trace, [RD] Ch. VI Thm. 4.2 condition T R A  1. The normalization 

condition (b) follows from ibid. Ch. III Thm. 10.5 condition T R A  3; see also 

Ch. VII Cor. 3.4 (b). | 

Proof(of  Thm. 0.2.3, relying on Thm. 0.2.10, which itself is proved in §2.3): In 

Examples 1.2.4 and 1.3.3 it was shown that (~ ' ,{(-1)dlmTr~}) and 

(~ ' ,  {Cx}, {Trf}) are a dualizing complex and a canonical complex, respec- 

tively. Condition 1.4.1 (a) holds in virtue of [Ye] Cor. 4.4.12 (b). It remains to 

check the normalization condition (b). 

Fix a natural number n. Let To . . . . .  Tn be the homogeneous coordinates of 

the projective space P := P~, in other words P = Proj kiT0, . . . ,  Tn]. Consider 

the chain of points ~ := (x0 , . . . ,  xn), with xi being the homogeneous prime ideal 

(T1 . . . .  , Ti) C k[To,. . . ,  Tn]. Introduce inhomogeneous coordinates t~ := TjTo ,  

i = 1 , . . . ,  n; these form a regular system of parameters at the point x := Xn = 

(1, 0 , . . . ,  0). Consider the local cohomology class 

[d t l  A . . . A d t n ]  
c~ := L t l , . . , t n  j E H~(~, /k)-  

By [Li] Prop. 8.5, the composite map 

H~(~t~/k ) canonical  Ha(p,  Ft,/k) f e  k 

sends a ~ 1. On the other hand, by Thm. 0.2.10, and by the definition of Tr~ 

in [Ye], we find that the map 

Hx(~p/k[n]) H°(Ep) = ~(x) ~ H°(P, t~p) (-1F T r .  k H~(a~/k) = 0 n cp  
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sends 

\( dtl tlA ... t,~A dtn ) Res~,k 

) (2)  -bn2q-n ( d t l A ' " A d t n )  : 1. I 
= ( - 1  Res¢,a tl • .. t~ 

Remark 1.4.2: Let us indicate another, more accessible, way of constructing a 

residue complex on Y. Let (7¢', {0x}) be a dualizing complex on Y - say the one 

provided by Example 1.2.5. Then the proof of [Li] Thm. 0.3B, mutatis mutandis, 
gives the existence of a canonical structure ({~'v }, {0S}) on 7¢', compatible with 

{0x). 

Proof (of Thm. 0.2.1): Let Adu: 7¢" -~ 7U' (resp. Ac~": TO" ~ 7U') be the 

isomorphism of complexes arising from the dualizing structures, cf. Prop. 1.2.6 

(resp. the canonical structures, cf. Prop. 1.3.4). Let A be the automorphism 

(A¢~n) -1 o A du of TO'. We must prove that A = 1. 

Fix a natural number n. For any X E Y~r, one has Ax e EndD(x)(TCx) = 

F(X, Ox) c k(X),  since 7¢~¢ is residual. Given a finite, generically 6tale mor- 

phism f :  X ~ Y, A commutes with 0 S. Because the trace pairing k(X) × 

~'~nk(x)/k ___+ ~-~nk(y)/k is nondegenerate, we conclude that Ax = f*(Ay) C k(X). 
If g: U ~ X is an open immersion then Au = g*(Ax) C k(U). But on P~ we 

have by def in i t i on  )~p~ ~- I E k. NOW given any X E )2 ~, we can find an open 

immersion g: U --~ X and a finite, generically ~tale morphism f :  U --* A~ (cf. 

proof of Prop. 1.3.4). Hence Ax = ,,~p~ = l. I 

Since residue complexes on ]2 exist, we can conclude: 

COROLLARY 1.4.3: Let Tt" be a residual complex o n  ~Zar. Then any dualizing 
structure on Ti" induces a unique canonical structure on it, to make ~" into a 
residue complex; and vice versa. 

2. Local Cohomology and Residual Complexes 

2.1 A COBOUNDARY CALCULATION. Let (A,m) be an equidimensional, 

catenary, noetherian local ring, of dimension d. Let (TO', 0) be a residual complex 

over A. ASsume that  the codimension function associated to TO" (in the sense 

of [RD] p. 282) equals the height function ht:  Spec A ~ Z. This implies that  
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the complex TC is concentrated in the dimension range [0, d]. Given a prime 

p • SpecA with ht(p) = c, set 7~(p) := Hc(Tc).  Then 7~(p) is an injective hull of 

the residue field k(p) over the local ring Ap. For any integer c we get a canonical 

decomposition 7~: = ~]~ht(p)=¢ 7~(p). 

Given a saturated chain (p, q) in Spec A (i.e. ht(q/p) = 1), let 0(p,q) be the 

operator 

0(p,q): T~(p) ~ 7~ c o T~c+I_~T~(q) 

where c = ht(p) (cf. [EZ] Ch. I §1.2). For an element t • A let 0[t]: TC --* n"  be 

the operator of degree 1: 

(2.1.1) air] := E O(p,q) 
tEq--p 

where (p, q) runs over the saturated chains. 

Through the end of Section 2, t = ( t l , . . . ,  td) is a fixed system of parameters 

in A. Since the ring A is catenary, according to [Ma] (12.I) Thm. 18 and (12.K) 

Prop., the following condition is satisfied: 

(2.1.2) Let a C A be an ideal generated by c elements of { t l , . . . ,  td}. 
Then any minimal prime p over a has ht(p) = c. 

Given an element s • A, the localization of an A-module M with respect to 

powers of s shall be denoted by Ms. Consider the exact sequence of complexes 

(2.1.3) 0 ~ F(s)~" --* ~" ~ 7~ ~ 0, 

where F(~) is the submodule of elements annihilated by some power of the ideal 

(s). The sequence (2.1.3) is canonically split (as graded A-modules, not as com- 

plexes !); in fact 

r( )Tv 

Let 0s be the coboundary operator of the localized complex T~. The operator 

0[s] of (2.1.1) is an A-linear homomorphism 0[s]: ~ ~ F(~)TC; it "goes across 

the boundary": from the open set {s ¢ 0} to the closed set {s = 0} in Spec A. 

From the condition (2.1.2) on our d-tuple t = ( t l , . . . ,  td), it follows that  if p 

is a prime of A s.t. ht(p) = c and t l , . . . ,  tc • p, then Q + I , . . . ,  td ~ p. Therefore 

(2.1.4) F(tl ..... tc)7~ c C Rc tc+l . . . t d  • 
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Suppose we are given an A-module  M,  and a h o m o m o r p h i s m  ~/: M --~ 7~ °, such 

tha t  0 o 7/ = 0. We m a y  view 7/ as a h o m o m o r p h i s m  of complexes  T/: M --* 7~'. 

Since no t~ lies in any pr ime p of A with ht(p)  = 0, we can localize wi th  respect  

to tl - - - td  to get T/: Mt~...t~ ~ T~° = T~°. t l  .. ,ta 

Choose some u E Mt~ t d ,  and define 

(2.1.5) Uo := ~/(u) E T~ °, 
~ti : :  0[ti](~ti-1 ) E T~ ~ ; i = 1 , . . . ,  d. 

Therefore  u~ = O[td o . . .  o O[td o 7/(u), and in par t icular  ui E F(t~ ..... t~)7~ ~ C 

t i + l  " ' t d "  

LEMMA 2.1.1: F o r  i = 1, d o n e  h a s  u i  = Ot~+l. . . t~(u~-l)  E 7~ i 

P r o o f :  The  proof  proceeds by induct ion on i. If  i _> 2 we m a y  assume tha t  
i--1. i--1 Ui_ 1 : O t i . . . t a ( ~ t i _ 2 ) .  Let p E S p e c A  have ht(p)  = i, and let 0p . T~p ---* 

T~(p) be the localization of 0i -1:  7~ ~-1 ~ ~ i  at  p. We must  show tha t  if 

t l , . . .  , t i - 1  E p but  t i , . . .  , t d  ~ p, then  0~- l (u~_l)  -- 0. But  O~ -1 factors  th rough  

0 i-1 "T~ ~-1 T~ i I f i = l t h e n  t i ' " t d "  t i ' " t d  --+ t i ' " t d  " 

0°1 = o ° o , ( u )  = 0; t 1 . . . t  d 

and if i >_ 2 then  

0 i - 1  0 i -1  0 i - 2  (Ui-2)  -~ 0 Q . . . t a ( U i - 1 )  : t i . . . t a  0 t~. . . t~ 

since (T~,..td , Ot,...t~) is a complex.  I 

2.2 KOSZUL-RESIDUAL COMPLEXES. Let  (A, m), (TC,0) ,  t -- ( Q , . . . ,  td) 

and ~/: M --* ~ o  be as in Subsect ion 2.1. Let  K ' ( t i )  be the complex  . . .  --* 0 --~ 

A 1 ,  A t ,  ---* 0 ~ . . .  with A in dimension 0. The  complex  K ' ( t )  is the tensor  

p roduc t  K ' ( Q )  ® A " "  ®A K ' ( t d )  (cf. [LS] §3). It  is the direct l imit  of the Koszul  

complexes K ' ( t ' ~ ;  A), as m --~ o~. Denote  the  coboundary  ope ra to r  of K ' ( t )  by 

d. According to [LS] L e m m a  (3.2.1), for any complex  N" e D+(A),  the inclusion 

FINN" C N" = K ° ( t )  ®m N" induces an i somorphism R F m N "  -~ K ' ( t )  ®A N" in 

D+(A),  na tu ra l  in N ' .  Taking N" = M,  one gets an i somorphism 

H d ( M )  = H a R F m  M ~ H a ( K ' ( t ) ® A  M) .  
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It turns out that this isomorphism differs from the one in [LC] Thm. 2.3, by a 

factor of (--1)d; see [Sa]. Hence given an element m E M, the generalized fraction 

[ 7 ]  EHdm(M ) i s s en t t o thec l a s s  ( - - 1 ) d [ t ~ l ® . . . ® t d l ® m ] E H d ( K ' ( t ) ® A M ) .  

We are interested in the complex K" (t) ®A TC. By definition, 

(K'(t) ®A 7~') ~ ---- O Ki(t)®A 7~ j ( ~  ( ~  7~ j 
t l  I " " t l i  

i T j = n  i - { - j = n  l l  < " , ( l l  

and the coboundary D is given by: 

D n =  E d i Q l + ( - 1 ) ~ l ® O J "  
i + j = n  

LEMMA 2.2.1: Let Uo, Ud be the elements of TC defined in formula (2.1.5). 

Consider them as elements o f (K' ( t )®AT~')  d as follows: uo E 7~ ° =- Kd(t)®A t z . . . t a  

Ti°; and Ud E 7~ d = K°(t )  ®A 7~ d. Then 

2  ee(g'(t) e A n ' )  d 

is a coboundary. 

Proo[: 

Define 

Consider all ui as elements of (K' ( t )  ®A 7~') d: 

ui ET~ i cKd--~( t )®AT~ " i = 0 ,  d. 
t i + l  " " t d  ~ " " * ' 

vi :=Ui ET~+2...td c K d - i - l ( t ) ® A  ~ i  ; i = 0 , . . . , d - 1 .  

By Lemma 2.1.1, (1 ® 0)(vi-1) = ui. On the other hand, since u~ E F(tl ..... t~) T~i, 

it follows that  

(d®l)(vl) C Tt~,+~...t, C Ui+l( t )  ®A r id - i - l ,  

SO (dQ1)(v~) = ul. Thus 

D(vi) = (d ®l)(vi) + (-1)i(1 ® O)(vi) = u~+l + ( -1) 'u i  

and u i +  1 ~- (--1)i+lui (mod coboundaries). | 
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THEOREM 2.2.2: Consider the homomorph i sm Hd(~): Ham(M) --+ Ham(T/") = 

T/(ra) induced by rl: M --* T/'. For any m E M one has 

(It]) / Hd(r~) =(- -1)  2 0 [ t d l o . . . o O [ t l ] o ~  t l - - t a  " 

Proof." Set u := t1-1-. " t d l m  G Mtl...td and define u o , . . . ,  ua as in formula 

(2.1.5). By definition, 

I t ]  = (--1)d[u] c H d ( K ' ( t ) ® A M ) - ~  Hd(M),  

where [u] is the cohomology class of the cocycle u E Kd(t)  ®A M. Thus we see 

that Hd(r / ) ( [ t ] )  = (--1)d[u0] • Hd(K'(t)  ®A M). According to Lemma 2.2.1, 

(d+l) 
[uo] = ( -1)  2 [Ud] • Hd(K'( t )  ®A T/')- But ud = O[te} o . . .  o O[t~] o 7](u) • 

T/(m), and under the isomorphism T/(m) ~ Hd(K" (t)®A T/'), we have Ud H [Ud]. 

| 

2.3 PROOF OF THEOREM 0.2.10. Let A := Ox,x ,  which is a local domain of 

dimension c. Set (T/',0) := (Kix,x, fx,~)[-n];  soT/i ~-~ = K:x, x and 0 = ( -1 ) -n fx ,x .  

This is a residual complex over A satisfying the assumptions of §2.1. Take M := 

&X,x and let r/: M --~ T/0 be fix,x: &x,~ -* ~x,~" Now for any saturated chain 

= (Xo . . . .  ,xc) in X we have 0(~c_l,xo) o...o0(~o,~1 ) = (-1)cn5~. So from Thin. 

2.2.2 we get 

°"'O[t~] ° ~ ( ~ )  

(l(x;t) 

3. Comparing Local Cohomology Residues to Parshin Residues 

3.1 FRACTION FIELDS OF COMPLETE LOCAL RINGS. In this subsection 

we consider a field L, which is the fraction field of a complete, local, integral 

k-algebra A, and has the "m-adic topology". We prove that given a finite ex- 

tension K --* L of such fields, there is a trace map on separated differential 
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O*,sep O*,sep forms: ~ I : L / K  : ~ * L / k  ----+ * ~ K / k  " This trace map is compatible with other known 

trace maps. Some familiarity on the part of the reader with lYe] Sections 1-2 is 

assumed. 

Let k be a perfect field, and let (A, m) be a complete, noetherian, local k- 

algebra. Assume that  A is residually of finite type, i.e. A / m  is a finitely gener- 

ated field extension of k. Put  on A the m-adic topology. Then A is a Zariski 

semi-topological (ST) ring, as defined in [Ye] Def. 3.2.10. In fact, on any finitely 

generated A-module, the fine A-module topology is the same as the m-adic topol- 

ogy. If A --+ B is a finite, local homomorphism between two such algebras, then 

as an A-module, B has the fine A-module topology. 
O*,sep Let "A /k  be the separated algebra of differential forms of A relative to k. 

o l , s e p  Recall that A is said to be differentially of finite type over k, if ~'A/k is a 

finitely generated A-module, with the fine topology. Since the multiplication 
o l , s e p  ~-~l,sep o n , s e p  map "A /k  ®A' ' "  @A A/k ~ "'A/k is a strict epimorphism for every n (cf. [Ye] 

o * ' s e p  Def. 1.5.3), it follows, by ibid. Lemma 1.2.12, that "°A/k is finitely generated 

over A and has the fine topology too. 

rr  t",, * sep LEMMA 3.1.1: The algebra A is differentially of finite type over k. hence ~A'lk 

is the universally finite differential algebra of A/k ,  in the sense of [KD]. 

Proof: Choose a surjective local homomorphism of k-algebras f :  Kilt]] ~ A, 

where K[[t]] = K [ [ t l , . . . ,  tn]] is a ring of formal power series. By [Ye] Cor. 1.5.19, 

K[[t]] is differentially of finite type over k. Since K[[t]] ®k K[[t]]--~A ®k A is a 
o l , s e p  ~ O 1,sep Ol , s ep  strict epimorphism of ST k-modules, so is "°K[[t]]/k "'A/k • Therefore "'A/k 

is finitely generated and has the fine A-module topology. According to [Hull 
O*,sep Remark 2.5, ~'A/k is the universally finite differential algebra of A/k .  | 

Now assume in addition that A is an integral domain, and set L := Frac(A). 

Put  on L the fine A-module topology; this makes L into a ST ring. 

LEMMA 3.1.2: 

1. L is a separated ST  k-algebra. 
o * , s e p  o* , sep  2 . . . L / k  = L QA .~A/k ' a n d  this i s  a f r e e  S T  L-module .  

3. I f c h a r k = p > O ,  then LIk = ~ L I k = ~ L / ' £ "  
O 1 ,sep 4. rankL "'L/k = dim A + rankA/m •1 (AIm)lk" 

Proo~ (1) Choose a noether normalization: a finite, injective, local, k-algebra 

homomorphism K[[t]] = K[[ t l , . . . , tn ] ]  --* A, and let M := Prac(K[[t]]). Since 
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A has the fine K[[t]]-module topology, it follows that L has the fine M-module 

topology, so it is a free ST M-module. Therefore it suffices to prove that  M 

is separated. This in turn is a consequence of the existence of an injective, 

continuous homomorphism M ~ K ( ( t l  . . . . .  tn)), since K ( ( t l , . . . ,  tn)) is known 

to be separated. 

(2) The homomorphism A --* L is topologically ~tale, by [Ye] Prop. 1.5.8. Now 

use Thm. 1.5.11 of [Ye], Lemma 3.1.1 and Part (1) of this lemma. 

(3) Let M be as above. Then M (p/k) = Frac(K(P/k)[[tP, . . . ,  tP]]) C L (p/k) and 

L has the fine M(P/k)-module topology. From here on it is a standard positive 

characteristic argument (cf. [Ye] Cot. 2.1.15). 

(4) The formula holds for M, and hence for any finite extension thereof (if 

char k = p use Part (3)). II 

PROPOSITION 3.1.3: Let A and B be integral, complete,  noetherian, residually 

o f  finite type, local k-algebras, and let A ~ B be a finite, injective, local, k- 

algebra homomorphism.  Set  K := Frac(A) and L := Frac(B). Then there is 

o . . . .  P o . . . .  P satisfying axioms T1, T2 and T3 of  lye] a trace m a p  W r L / g  : ~ L / k  ~ "~K/k  , 

Prop. 2.3.2. Hence TrL/K coincides with Kunz ' s  trace m a p  o f  [KD] §16 (cf 

Lemma 3.1.1). 

Proof" First note that any finite extension K '  of K is of the form Frac(A') for 

some finite, local homomorphism A --* A ~. Now we may use the previous lemmas 

and the proof of [Ye] Prop. 2.3.2 to define (and uniquely determine) TrL/K.  Since 

the trace map is compatible with the projection ~*-/k --* o . . . .  P °~-/k , it coincides with 
the trace of [KD]. | 

3.2 SPECTRA OF COMPLETE LOCAL RINGS. In this subsection we pass to 

topological local fields (TLFs). This is done by the Beilinson completion method, 

cf. [Ye] §3. Let A and B be complete, noetherian, residually of finite type, local 

k-algebras, and let A --~ B be a finite, local, k-algebra homomorphism. Set 

~- := Spec B and ]Y := Spec A. Given an A-module M and a chain 7) in ]Y, 

denote by MO the Beilinson completion of the sheaf O¢ ® M along 7). This is a 

ST A-module (cf. [Ye] §3.2). Say ~ is the closed point of ]Y. Then O?,(~) -- A 

as ST rings. Therefore, if M is a ST A-module with the fine topology, and if 

7) = ( . . . ,  ~)), then the natural map M ~ M~ is continuous. (In fact, M ~ M(9 ) is 

a homeomorphism, by [Ye] Prop. 1.2.20 and Cor. 1.2.6.) Suppose 7) = (Y0,... ,  Yn) 
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is a maximal chain in Y, and suppose ~ = (:Co,..., :cn) is a chain in )(  lying over 

~) (so ~ is necessarily maximal). The fields k(~)o) and k(2o) are topologized, and 
~-~ . . . .  p ~-~*,sep On the by Prop. 3.1.3 there is a trace map Tr~(~o)/~(~o) : ~(~o)/~ --~ ~(9o)/k" 

other hand, by [Ye] formula (2.3.10), there exists a trace map on the clusters of 
[-~*,sep ~ O*,sep  TLFs, Tr~(~)/~(,)): ~(~)/~ ..~(,))/~. 

PROPOSITION 3.2.1: The diagram below commutes: 

O* ,sep ,_ ~ ~,-~* ,sep 
~ol~o'~k(~o)/k '-~'~1,) k(~)/k 

~ * , s e p  ~_ o * , s e p  
kO)o)/k ~°k(~)/k 

Prook One has l-I~lo k(~) ~ (II~ol~o)k(2o)®k(~o)k(O) and ft *'s~p : k(~)®k(~o) k(~)/k 
....  P for ~ = (2o, ..). Now use the axioms. | k(~o)/k 

Finally, here is: 

Proof o[ Thm. 0.2.9: Take B := Ox,(=) = Ox,~ and A := K[[t]] = K[[ t l , . . . ,  

tc]]. There is a finite morphism 2C ~ Y, and a flat morphism )C --~ X. Let Yi E 1~ 

be the prime ideal Yi := ( t l , . . . ,  ti), so 7) := (Yo,... ,  ~)c) is a maximal chain in Y, 

and k(~)) = K(( t ) )  = K ( ( t c ) ) . . .  ((tl)). A chain ~ = (2o . . . .  ,2c) in A" lies over 

the chain ~) in ]Y iff ~ lies over some chain ~ in X such that ~](x; t). Cot. 3.3.13 

of [Ye] says that there is a canonical isomorphism of clusters of TLFs: 

(1) H k ( ~ ) ~  1-[ H k ( ~ ) =  1-Ik(~)" 
~l(x;t) ~l(x;t) ,~I~ ~1~ 

Since B is a reduced ring, its total ring of fractions Frac B = k()() equals 

1-I~o k(2o), the product running over the generic points of )C. According to [Hu2] 

Ft n'sep Therefore §1, Wrk(f()/k(~Z ) ((~) E g[[t]]/k" 
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n _ c  for some/9  i E f tK/k, where t i :=  t~ 1 . - .  t~ °. By definition, ResL,CIc t l , . . . ,  tc = 

/3(0 ..... o). On the other  hand, 

E 
~l(x;t) 

RPS~'K (tl :~.tc)= E ReSk(~)/K (tl ~ tc ) 
~l(x;t) 

(°)  = Resk(~)/K o ~ ~k(~o)/k(~o) t~-:'tc 
~o I~)0 

---- ResK((t))/K(3(o ..... 0) A d log t l  A . - .  A dlogtc)  

= ( - 1 )  2 (o ..... o)- | 

by (3.2.1) 
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