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ABSTRACT

According to Grothendieck Duality Theory [RD], on each variety V over
a field k, there is a canonical complex of Oy -modules, the residue com-
plex lC{i,D " = 7'k, These complexes satisfy (and are characterized by)
functorial properties in the category V of k-varieties. In [Ye] a complex
Ky, is constructed explicitly (when the field k is perfect). The main re-
sult of this paper is that the two families of complexes, {IC%D "}vev and
{K} }vev, which carry certain additional data (such as trace maps...),
are uniquely isomorphic. As a corollary we recover Lipman’s canonical
dualizing sheaf of [Li], and we obtain formulas for residues of local coho-

mology classes of differential forms.
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0. Introduction and Statement of Results

0.1 INTrRODUCTION. This paper is yet another step in the program, begun by
J. Lipman, E. Kunz and others, to give a concrete realization of the Grothendieck
Duality Theory. In [Li] we find a realization of the dualizing sheaf in the absolute
setting: varieties over a perfect field. With the recent papers [HK1], [HK2],
[LS] and [HS], one may regard the program, in its restricted version of relative
dualizing sheaves for dominant equidimensional morphisms (over a wide class of
base schemes), as complete.

This is hardly the case for the full theory of dualizing complexes. Here we only
have a concrete realization of absolute duality, namely the Grothendieck Residue
Complex Ky of [Ye]. Let k be a perfect field. In [Ye] Appendix it was shown
that for a proper k-variety x: X — Speck, the pair (K, Tr,) is a residue pair
(cf. §0.2), so it is a realization of the pair (7'k, Tr,) of [RD]. Missing from this
realization is the connection to differential forms. Borrowing from the language
of [Li] §0, what we find in [Ye] Appendix is an account of the dualizing structure
on K, whereas [Ye] §4 gives an account of the canonical structure on it. The
main result of the present paper connects the two structures.

At the same time we recover Lipman’s canonical dualizing sheaf & of [Li].
Suppose dim X = n. From [Ye] Thm. 4.4.16 we know that the sheaf of regular
differentials wx satisfies ox = H " Ky C Ky ®@Q% ko where K y is the constant
sheaf of meromorphic functions. Let nx: @x[n] — K be the corresponding
homomorphism of complexes. Let §x: H*(X,&x) — k be the trace map of [Li]
Thm. 0.6 (d). We prove that §x = (—1)" Tr, o H° R 7. (nx ).

An intriguing problem, posed to us by S. Kleiman (private comm.), is to explain
the relation between local cohomology residues (residue symbols) and Parshin
Residues. We solve this problem here, using the methods of semi-topological rings
and Beilinson completions. Lipman, in a private communication, conjectured a
formula for the canonical map HS(nx): H5(@x) — K(z), where z € X has
codimension ¢, and K(z) = HS"(Ky) is the dual module of [Ye] Def. 4.3.10, a
formula which we prove. The proof is based on coboundary calculations in the
Koszul-residue double complex.

The results mentioned in the two preceding paragraphs have been obtained
independently by R. Hiibl [Hu2], for the most part only for Cohen-Macaulay

varieties. Interestingly, the route taken by Hiibl is almost the opposite of ours.
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0.2 STATEMENT OF RESULTS.  Let X be an n-dimensional variety over the
perfect field &, with structural morphism 7. Consider the following three objects
associated to X:

1. The complex KRP* := 72k (see [RD] Ch. VI). It is a residual complex on
X (Def. 1.1.1), concentrated in the dimension range [—n, 0].

2. The sheaf of regular differential forms &x of Kunz (see [Ku| p. 68). This is

a coherent subsheaf of the sheaf of meromorphic differentials K x @ Q% /..

3. The residue complex Ky of [Ye] Thm. 4.3.20. This too is a residual com-
plex on X, concentrated in the dimension range [—n,0]. In dimension —n
one has K3" = Kx @ 0% ;.

The second and third objects are easily related: x = H™" Ky as subsheaves
of Kx ® Q%) (cf. [Ye] Thm. 4.4.16; or cf. Example 1.3.3 and [Li] Cor. 2.3).
Hence there is an induced homomorphism of complexes

nx :J)X[n] — ICX ,

which is a quasi-isomorphism iff X is a Cohen-Macaulay scheme (cf. [Ye] Cor.
4.5.7). The main result of this paper, namely Thm. 0.2.3 below, provides a
natural isomorphism of complexes Ky = K&P" on any variety X.

Let V be the category of k-varieties, and let Vz,, be the subcategory with
the same objects, but with open immersions as its morphisms. In §1 the notion
of a residue complex on V is defined. It consists of a residual complex R" =
{Rx}xev on Vza,, together with a dualizing structure {#x} and a canonical
structure ({vx}, {fr}), which are compatible with each other. These definitions
are adapted from Lipman’s corresponding definitions for sheaves; cf. [Li] §0. We

prove:

THEOREM 0.2.1: (Rigidity) Let (R',{0x},{vx},{0s}) and (R",{6%}, {7x},
{0%}) be two residue complexes on V. Then there exists a unique isomorphism
of complexes on Vg, At R’ 5 R, which respects the dualizing structures and
the canonical structures.
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Observe the similarity to Thm. 0.3B of [Li].

One residue complex on V is gotten from the pseudo-functor A of [RD] Ch.
VI. Given m: X — Speck in V, set IC%D' := 72k, a residual complex on X. The
variance data of ibid. Thm. 3.1 make KRP" = {KR’P"} x¢y a residual complex on
Vzar. From ibid. Thm. 3.1 and Thm. 4.2 we obtain families of homomorphisms
{6%°}, {7XP} and {7P}.

PROPOSITION 0.2.2:  (KRP, {%P}, {1}, {6%P}) is a residue complex on V.

Next, consider the residual complex XK' = {Kx}xey on Vza;, where for a
variety X, K is the complex of [Ye] §4.3. Let {Tr,}, {Cx} and {Trs} be the
maps defined in [Ye] §4.4 and 4.5. The main result of the paper is:

THEOREM 0.2.3: (K", {(-1)%™X Tr, },{Cx}, {Tt;}) is a residue complex on
V.

Remark 0.2.4: In [Ye], Appendix it was essentially proved that the dualizing
complexes ({KRP '}, {6%P}) and ({K}, {Tr,}) are isomorphic.

Remark 0.2.5: Tt is somewhat disconcerting that the two residue complexes men-
tioned above, viz. K®P" and K', have complicated constructions running into
many pages in [RD] and [Ye], respectively. In Example 1.2.5 and Remark 1.4.2
we indicate a more accessible approach to the existence of dualizing and residue
complexes on V.

The equality of sheaves &x = H™4™X Ky on any variety X makes & =

{®x } xev into a sheaf on Vz,,. A direct consequence of Theorem 0.2.3 is:

COROLLARY 0.2.6: The data
@, {(-D)* X Tr, o H* R (nx)}, {H™ ™ X (nx" o Cx)}, {H™ 4™ ¥ (Tx;)})

is a canonical dualizing O-module; i.e. it satisfies the conditions of [Li] Thm.
0.3B.
The uniqueness part of [Li] Thm. 0.3B implies:

COROLLARY 0.2.7: Suppose X is proper of dimension n over k. Let
Ox: H*(X,0x) = B (X, &x[n]) — k
be the the trace map of [Li] Thm. 0.6 (d). Then

gX = (__1)11. T‘rw OHORW*(nX)-
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The proofs of the statements above are in §1.4. The proof of Thm. 0.2.3 breaks
down into a global part, involving categories and functors, and a local part, whose
essence is Theorems 0.2.9 and 0.2.10 below. These theorems are of interest on
their own.

Let £ € X be a point of codimension ¢, and let o: K — @X,I be a pseudo-
coefficient field (i.e. [k(z) : K] < o0). In [Hu2] Def. 1.1 the residue map

Reso, /xm.t Halox) — Q¢

is defined (cf. ibid. Remark (ii)). Let us denote this map by Resi’fj} = Resgg‘(f,.
When z is a closed point (or equivalently, when [K : k] < oo), this is the well
known residue map; cf. [Li] §7. The generalized fraction notation (cf. [Li] §7 and

[HK1] §3) shall be used to represent local cohomology classes.

Remark 0.2.8: The generalized fraction notation used in [LS] differs from the one
used here (i.e. that of [Li] §7) by a factor of (—1)¢; cf. [Sa].

Suppose t = (t1,...,t.) is a system of parameters in Ox ,. Given a chain
¢ = (xo,...,x.) of points in X, we write &|(z;t) if z. = z, and if t;(z;) = 0
for i = 1,...,c. Here t;(z;) is the class of ¢; in the residue field k(z;). Such a
chain is necessarily saturated, and there are only finitely many of them. Also
note that x is the generic point of X, and that ¢;(x,_1) # 0 for all &. Let
Resg, i = Resgo 1 QU )k — Q)% e the Parshin residue map of [Ye] §4.1.

¢
o o (3) 2
Res; k [t17---,tc] = (-1)\2 Z Res&K( —
)

&l (zst

THEOREM 0.2.9: (Cf. [Hu2] Cor. 2.5.) Let t = (t1,...,t.) be a system of
ty-
in Q7 ¢

parameters in Ox .. For any regular differential form o € &x .,
7)
K/k

The proof of the theorem is in §3.2. This solves the problem posed by
S. Kleiman, regarding the relation between the two types of residues.
Recall that for every ¢, Kx* = D¢ X, K(y), where

Xg:={y € X| dim{y}~ =q},

and K(y) is a skyscraper sheaf supported on {y}~. Hence there is a canonical
isomorphism of O ,-modules K(y) = H,4(Kx). If £ = (zo,...,2.) is a chain
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of points as above, then K(zg) = £(X) ® X% k- Let b¢: K(zo) — K(zc) be the
coboundary map of [Ye] Def. 4.3.10.

THEOREM 0.2.10: Let t = (¢1,...,t.) be a system of parameters in Ox .. For

any regular differential form o € &x . one has

HE (1x) ([tat}) =<-1)(§>+m 5 6€< at>

£1---
El(zit) 1ot

in B (K [-n)) = B (Ky)  K(a).
The proof of this theorem is in §2.3.
Suppose o: K — 1) x.» 15 a pseudo-coefficient field. There is a canonical iso-
morphism of Ox ,-modules (see [Ye] Def. 4.3.10 and Remark 4.3.17):

®,: K(o) = Hom‘}?“t(éxw,ﬂg}"/;) = K(z).

Putting Theorems 0.2.9 and 0.2.10 together, we get Lipman’s conjectured
description of the map HS(7x ), up to a sign:

COROLLARY 0.2.11: (Cf. [Hu2] Thm. 2.2) Let 0: K — Ox_. be a pseudo-
coefficient field. Then the homomorphism

-1

HE (0x) =20 k(2) 22 K(0)

is given by

o (2] o e 2], s

Observe that this corollary directly implies Cor. 0.2.7.

Remark 0.2.12: Tt is not hard to extend most results of this paper to reduced
equidimensional schemes of finite type over k. For the sake of clarity of the

presentation we restricted ourselves to varieties.

1. Global Calculations: Sheaves of O-Modules on Vyz,,

1.1 RESIDUAL COMPLEXES ON Vz,.. Let k be a perfect field, and let V be
the category of varieties over k, i.e. reduced, irreducible, separated k-schemes of
finite type. Let Vza, be the subcategory of V having the same objects, and having
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open immersions as its morphisms. We recall the notion of an O-module on Vg,
from [Li] pp. 28-30. Briefly, Vz,, is a Grothendieck topology (with the obvious
notion of a cover), and we may speak of a sheaf on this site (a contravariant
functor to Sets, satisfying the usual conditions for a presheaf to be a sheaf).
Let O be the sheaf on Vg, given by V + I'(V,Oy). Then O is a sheaf of
rings, and one defines a sheaf of O-modules on Vz,, in the obvious way. The
O-modules on Vz,, form an abelian category. This category is equivalent to the
category whose objects are families of Oy-modules {Fy }yey, together with an
isomorphism Sg: g*Fy = Fu for every open immersion g: U — V, satisfying
Brg = By 0 g*(By) for every U 2>V Lo W.

An O-module F is said to be coherent (resp. quasi-coherent) if Fy := Fly is
coherent (resp. quasi-coherent) for every V; here Fy is an actual sheaf on V. If
F and G are two (O-modules, their tensor product F Q¢ G is the O-module s.t.
for every V, (F®0 G)|lv = Fv ®o, Gv. Given a complex F* of O-modules, each
cohomology HY(F") is also an O-module.

Here are three examples of O-modules:

1. Q4™ ig the sheaf V — T'(V, Q“i};’;‘cv).

2. @ is the sheaf V — I(V,0y).
3. K is the sheaf of meromorphic functions, V — k(V).

The sheaf K is a constant sheaf, and by definition K ®o Q4™ = K Q0 & as
O-modules. Formally, one may consider dim as a section of the constant sheaf Z
on Vgzar, taking the value n on the subcategory V7, of n-dimensional varieties.

In [RD] ch. VI §1 we find the following definitions. Let X be a locally noethe-
rian scheme. For a point € X, let I be an injective hull of k(z) as an Ox .-
module, and let J(z) be the skyscraper sheaf which is I on the closed set {z}~

and 0 elsewhere. Then J(x) is a quasi-coherent, injective Ox-module.

Definition 1.1.1: (Cf. [RD] Ch. VI §1 Def.) A residual complex on X is a com-
plex R’ of quasi-coherent, injective Ox-modules, bounded below, with coherent

cochomology sheaves, and such that there is an isomorphism of O y-modules

Prr =P ).

pEZ zeX
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Definition 1.1.2: A complex R’ of @-modules on Vz,; is said to be residual if
Ry := R'|v is residual for every V € V.

Example 1.1.3: According to [Ye] Prop. 4.4.1, the family of complexes {K'y } xev,
together with the isomorphisms ('y;‘)‘l: g*Ky = K for every open immersion
g: X — Y, forms a complex of O-modules on Vz,,. By ibid. Cor. 4.5.6, this is in
fact a residual complex, which we denote by K.

1.2 DUALIZING STRUCTURES. Suppose V € V is proper, with structural
morphism «. As in [Ye] Appendix, we say that a pair (Ry,,0y) is a residue
pair if Ry, is a residual complex on V, and if fy: I'(V,Ry,) — k is a map of
complexes, such that for any F* € Dqc(V), the k-linear homomorphism

HomD(v)(f',R'V) — HomD(k)(Rn*]—"‘, k)

induced by 6y is an isomorphism.

Given a variety V, let V, := {z € V| dim{z}~ = ¢}. Consider the decreasing
filtration V- = {--- > V2> V-1 Vo}, called the dimension filtration, with
V7P = Uyp V- If (Ry,8v) is a residue pair on V, then by taking 7~ = k()
for any closed point x € V, we see that Ry, is a Cousin complex with respect
to the filtration V". This means that Ry? = @, ¢y, R(z), where for z € V,,
R(z) is the skyscraper sheaf with support {z}~ and group of sections H;¥(R},)
(cf. [RD] Ch. IV §3).

LEmMMA 1.2.1: Suppose

v 4+ v
(1.2.1) = tf
v —h.ow

is a commutative diagram of morphisms in V, with g, h open immersions and
with V,W proper over k. Let (Ri,0y) and (Ry,,0w) be residue pairs on V
and W, resp. Then there exists a homomorphism of complexes of Ow-modules
5. f«Ry — Ry, such that the diagram

R, .
ofRy 280 R

(1.2.2) = Ow

TR,
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commutes. Here m: V — Speck and p: W — Speck are the structural mor-
phisms. Moreover, the pullback homomorphism h*(8f): h*f. Ry, — h*Ryy, is

unique.

Proof: The existence and uniqueness of a morphism [f¢] in the derived category
D(W) which makes the diagram (1.2.2) commute is a direct consequence of the
fact that (Ryy,0w) is a residue pair. According to [RD] Ch. I Prop. 4.7, be-
cause Ry, is a complex of injective Ow-modules, [6¢] is represented by an actual
homomorphism of complexes, say ;. Now f.Ry needn’t be a Cousin complex
on W, w.r.t. the dimension filtration W*. However, since the diagram (1.2.1)
is cartesian, we have h* f, Ry, = g*R;,. The complexes h*f, Ry and h*Ry, are
Cousin complexes on U, so we can use [RD] Ch. IV Lemma 3.2 a) to conclude
that h*(f¢) is the unique representative of h*([6]). |

Example 1.2.2: Take W := A3, let P € W be the origin, and let U := W — {P}.
Let f: V — W be the blow up of W along {P}. Then L'(p}(f.Ry ) is a complex
concentrated in dimensions ~2,—1,0, so f,Ry, is not a Cousin complex.

The following definition is modelled on the definition of a dualizing O-module
of [Li] Def. 4.1.

Definition 1.2.3: Let R" = {Ry,} be a residual complex on Vz,,, and for each
open immersion g: U — V, let §,: ¢*Ry, 5 Ry be the restriction isomorphism.
A dualizing structure on R’ is a family of maps of complexes

6v:T(V,Ry) — k ,
one for each proper k-variety V, such that:
(i) The pair (Ry,,68y) is a residue pair.

(ii) Given a commutative diagram of morphisms (1.2.1), the homomorphism of

complexes h*(8;): h* f.Ry, — h*Ry, of Lemma 1.2.1 makes the following
diagram commute:

h* fu Ry, —‘L’h* (9;) Ry
= Bh

- B :
Ry —I— Ry
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We call (R', {6v}) a dualizing complex on V.

Example 1.2.4: Let K be the residual complex of Example 1.1.3. Consider the
family of maps Tx,: 7,Ky — k of [Ye] Thm. 4.4.14, where for each X proper
over k, m: X — Speck is the structural morphism. According to [Ye] Appendix
Theorems 1 and 3, (K, {Tr,}) is a dualizing complex on V.

Example 1.2.5: Here is an outline of much quicker construction of a dualizing
complex on V. Suppose for each proper variety X, with structural morphism =,
we have a dualizing pair (Zy,¥x), i.e. a complex Ty € DF(X) and a morphism
¥Yx: Rm.Ix — kin D(k), which represent the functor 7" +» Homp ) (R 7. F ", k)
on Dgc(X). It follows that T is a dualizing complex on X (in the sense of [RD}),
so the associated Cousin complex Ry := E(Zx) is a residual complex (cf. [RD]
Ch. VI Prop. 1.1), and we get a residue pair (R, 0x).

It is possible to find a residual complex R" on Vza, such that R'|x = Ry for
X proper, and such that (R, {6x}) is a dualizing complex on V. This may be
achieved by following [Li] pp. 40-47, mutatis mutandis; e.g. replacing Prop. 4.3
of loc. cit. by [Ve] Thm. 2, esp. the proof of case 1 of this theorem.

As for getting a dualizing pair (Z, % x ) on a proper variety X, this can be done
in the following way, which is implicit in no. 4 of Deligne’s appendix to [RD]. For
an affine open subscheme ¢g: U = Spec B — X, let 7 be the quasi coherent sheaf
on U corresponding to the B-module Homg (B, k), and let Zy = g.Z. Then Iy
is a quasi coherent injective Ox-module. Choose a finite open affine cover {U;}
of X. For p € N define

—P ._
M = @ Zuiyn--ns, -

ig< e <ip

Then T is a complex in a natural way, and there is a homomorphism ¥ x: I
— k, arising from the evaluation at 1 map: Homg(B,k) — k. It is easy to see
that the pair (T, ¥ x) represents the aforementioned functor. A more subtle fact
is that Ty, € DF(X), i.e. that it has coherent cohomologies; this follows from the
“local nature of 7', cf. [RD] Appendix no. 5, or [Ve|] Lemma 1.

PROPOSITION 1.2.6: Let (R',{0v}) and (R"", {6}, }) be two dualizing complexes
on V. Then there is a unique isomorphism of complexes A\: R’ = R" which is

compatible with the dualizing structures. By this we mean that for each proper
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variety V in V, the diagram below commutes:

T(V,R,) —Yu T(V,R%)

lav l‘%

k —_— k

Proof: For V proper define Ay so as to make the diagram above commute. If
g: U — V is an open immersion, with V' proper, define Ay := 8 0 g*(Ay) o 69‘1.
One checks, using the proof of [Ye] Appendix Thm. 3, that Ay is independent of
the compactification g. In general, any variety W is covered by compactifiable
open sets, W = | J; U;; as shown in loc. cit. Exercise, the isomorphisms Ay, glue
to give Ay . We point out that in this manner it is possible to bypass Nagata’s
difficult theorem on compactifications in [Na]. |

1.3 CANONICAL STRUCTURES.  We introduce the notion of a canonical struc-
ture on a residual complex of O-modules, along the lines of [Li] Def. 2.1. Denote

by V52 the full subcategory of Vza, consisting of smooth k-varieties.

Definition 1.3.1: Let R’ be a residual complex on Vz,;. A canonical structure
on R’ consists of the following data:

(a) A quasi-isomorphism of complexes of O-modules:
v: QU [dim]lygm — R |vgm

i.e. for each smooth variety V of dimension n, a quasi-isomorphism

v: QF / «[n] = Ry, compatible with open immersions.

(b) For each finite, generically étale morphism f: V — W in V, a homomor-
phism of complexes of Oy -modules

Of: LRy — Ry

These data are required to satisfy the conditions below, for any morphism f: V —
W as in (b).

(i) 85 induces an isomorphism of complexes f, Ry — Homy (f,Ov, Ry ).
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(ii) Let g: V°™ — V be the inclusion of the smooth locus, and let v € V™ C V
be the generic point. Say V has dimension n. Then 7yysm induces an
isomorphism v ,: QZ(V) /k 5 ’R‘_,:). The same happens on W, which has

generic point w. The condition is that the diagram below commutes:

n ’-YV,U -n —-n
Qvy/e Ry, = (RY )w
Tr 6,

n Tw, —n
eowy/k = R

We call (R',{vv},{f}) a canonical complex on V.
Observe that if R" admits a canonical structure, then on any variety V, Ry, is

a Cousin complex w.r.t. the dimension filtration V.

Remark 1.3.2: If (R',{vv},{8;}) is a canonical complex on V, then (H~ 4™ R",
{H™ 4™ (yy)}, {H 4™(6;)}) is a canonical O-module, in the sense of [Li] Def.
2.1. Tt follows that under the isomorphism of O-modules K ®p Qdim 5 R~ dim
induced by {7y}, we have & = H~ 4™ R".

Example 1.3.3: Consider the residual complex X" of example 1.1.3. The quasi-
isomorphisms Cx : Q% /k[n] — K, for X smooth over k, and the trace maps
Try: fuKyx — Ky, for f: X — Y finite, of {Ye] §4.4 and 4.5, are a canonical
structure on K. This is evident from the definition of maps Try.

ProPOSITION 1.3.4: (Cf. [Li] Cor. 2.3) Let (R',{w},{0s}) and (R"",{vy},
{0%}) be two canonical complexes on V. Then there exists a unique isomor-
phism of complexes of O-modules \: R© 5 R'*, compatible with {yy} and {v},}.
The isomorphism X is also compatible with {67} and {0 }.

Proof: For W smooth set A := 7l o (yw)~?; this is possible since (yw)™*

,a
priori only defined in the derived category D(W), is actually a homomorphism of
complexes (cf. [RD] Ch. IV Lemma 3.2). If f: V — W is a morphism as in (b),
denote by 7; the isomorphism R, 5f "Ry induced by @;; here f? is the functor
of [Ye] Def. 4.4.2. Set Ay := (’y}")‘l o 7}. Since Endpvy(Ry) = T(V,0v) C
k(V), we see that Ay is completely determined by its action on the generic stalk
Ry™ 2 vyx (n=dimV).

Now suppose W’ C W is an open subset such that, setting V' := f~1(W'),
the morphism f’ := f|y: V' — W’ is étale (and finite). Then V' is smooth over
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k. Condition (ii) implies that the two definitions of Ay~ - the intrinsic one, and
the restriction Ay |y, coincide. This, and the fact that Ay is determined by its
action on the generic stalk QZ(V) Jk? show that Ay is independent of f.

For the general case, cover V by open subsets {V,}, such that each V, admits
a finite, generically étale morphism to some smooth W,. One may take {V,} to
be any affine cover, and W, = A%}; cf. [Ma] Remark on p. 90, or [Li] Appendix
A. By the above arguments, the resulting isomorphisms Ay, patch. |

1.4 RESIDUE COMPLEXES ON V.

Definition 1.4.1: A residue complex on V is a residual complex R’ on Vza,,
together with a dualizing structure {#y} and a canonical structure ({yv }, {8s}),
satisfying the following conditions:

(a) (Compatibility) For any finite, generically étale morphism f: V — W

between proper k-varieties, the diagram below commutes:

HOW, f,Ry) —2e HOW,Riy)

.

B(V.Ry) e g

(b) (Normalization) For any n > 0, let P := P}, and let [, : H*(P, Q5 /i) =
k be the canonical projective trace map of [Li] Prop. 8.4. Then

0P OH"(P”yp) :/ .
P

Given a variety X over k, with structural morphism 7, set }Cg{(D "= 72k, where
(=)# is the pseudo-functor of [RD] Ch. V1. The variance data of ibid. Thm. 3.1
make KR = {KRP"}xcy into a residual complex on Vza,. For X smooth of
dimension n over k define y3°: Q7% / L[] = K5P" using the morphism ¢, of ibid.
Thm. 3.1d). For f: X — Y finite and generically étale, define 9¥P: f,KRP" —
K§P" using Try of ibid. Thm. 4.2. For X proper define %P: 7, KRP" — k using
Tr,; this is a homomorphism of complexes by ibid. Ch. VII Thm. 2.1.

Here are the proofs of Prop. 0.2.2, Thm. 0.2.3 and Thm. 0.2.1:
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Proof: (of Prop. 0.2.2) (KRP" {#8P}) is a dualizing complex on V, according
to [RD] Ch. VII Thm. 3.3 and Ch. VI Thm. 5.6.

Let us show that (K®P°, {y§P}, {67P}) is a canonical complex. Condition
(i) of Def. 1.3.1 follows from [RD] Ch. VI Thm. 4.2 condition TRA 2. As for
condition (i), let f: X — Y be finite and generically étale. By restricting 67"
to a smooth open subset U C Y s.t. f|;-1(y) is étale, we may assume that Y is
smooth over & (say, of dimension n) and that f is étale. By [RD] Ch. VI Thm.
3.1, Ch. II Cor. 8.3 and the subsequent remark, it follows that Try: f,Q% =
fAHTKRP = ap = fHTT KBP* is induced from the “classical” trace map
Trs: foOx — Oy. Passing to generic stalks we deduce condition (ii).

The compatibility condition (a) of Def. 1.4.1 is a consequence of the transitiv-
ity of the trace, [RD] Ch. VI Thm. 4.2 condition TRA 1. The normalization
condition (b) follows from ibid. Ch. III Thm. 10.5 condition TRA 3; see also
Ch. VII Cor. 3.4 (b). |

Proof (of Thm. 0.2.3, relying on Thm. 0.2.10, which itself is proved in §2.3): In
Examples 1.24 and 1.3.3 it was shown that (K,{(-1)4™Tr,}) and
(K',{Cx}, {Trs}) are a dualizing complex and a canonical complex, respec-
tively. Condition 1.4.1 (a) holds in virtue of [Ye] Cor. 4.4.12 (b). It remains to
check the normalization condition (b).

Fix a natural number n. Let Ty,...,T, be the homogeneous coordinates of

the projective space P := P, in other words P = Projk[Ty,...,T,]. Consider

the chain of points & := (zg, ..., Zy), with z; being the homogeneous prime ideal
(Ty,...,T:) C k[To,...,T,]. Introduce inhomogeneous coordinates t; := T;/To,
1 =1,...,n; these form a regular system of parameters at the point  := z,, =
(1,0,...,0). Consider the local cohomology class

dty A---AdE, nren
a:=[ ' € Hz (% )-

e ortn

By [Li] Prop. 8.5, the composite map
t{3 n i i3 ¥13 f
Hm(QP/k) canonical H (P7Qp/k) e

sends a — 1. On the other hand, by Thm. 0.2.10, and by the definition of Tr,
in {Ye], we find that the map

(=1)™ Trp
_—

HR (O3 ) = HAQR 4 n]) ==~ HY(Kp) = K(z) — H°(P, Kp) k
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sends

n 2
+no+n dt; A~ Adt,
a (—1)<2> Resg k 0¢ <1—t1t—)

n
+n?4n
= (_1)<2> Res; 4 (M) =1. 1

1 +tn

Remark 1.4.2: Let us indicate another, more accessible, way of constructing a
residue complex on V. Let (R', {#x}) be a dualizing complex on V - say the one
provided by Example 1.2.5. Then the proof of [Li] Thm. 0.3B, mutatis mutandis,
gives the existence of a canonical structure ({vv}, {fs}) on R’, compatible with

{6x}.
Proof (of Thm. 0.2.1): Let A4 R° 5 R’ (resp. A R° 5 R’) be the

isomorphism of complexes arising from the dualizing structures, ¢f. Prop. 1.2.6
(resp. the canonical structures, cf. Prop. 1.3.4). Let A be the automorphism
(xc@)~1o A4 of R". We must prove that A = 1.

Fix a natural number n. For any X € V3, , one has Ax € Endp(x)(Ry) =
I'(X,0x) C k(X), since Ry is residual. Given a finite, generically étale mor-
phism f: X — Y, A commutes with 8. Because the trace pairing k(X) x
Qpxy/e — Si(y) 1s nondegenerate, we conclude that Ax = f*(Ay) € k(X).
If g: U — X is an open immersion then Ay = ¢*(Ax) € k(U). But on P} we
have by definition Apy =1 € k. Now given any X € V", we can find an open
immersion g: U — X and a finite, generically étale morphism f: U — A} (cf.
proof of Prop. 1.3.4). Hence Ax = Apy = 1. |

Since residue complexes on V exist, we can conclude:

COROLLARY 1.4.3: Let R’ be a residual complex on Vz,,. Then any dualizing
structure on R’ induces a unique canonical structure on it, to make R’ into a

residue complex; and vice versa.

2. Local Cohomology and Residual Complexes

2.1 A CoOBOUNDARY CALCULATION. Let (A,m) be an equidimensional,
catenary, noetherian local ring, of dimension d. Let (R’, d) be a residual complex
over A. Assume that the codimension function associated to R' (in the sense
of [RD] p. 282) equals the height function ht: Spec A — Z. This implies that
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the complex R is concentrated in the dimension range [0,d]. Given a prime
p € Spec A with ht(p) = c, set R(p) := HJ (R’). Then R(p) is an injective hull of
the residue field k(p) over the local ring A,. For any integer ¢ we get a canonical
decomposition R® = @)= R(p)-
Given a saturated chain (p,q) in Spec A (i.e. ht(q/p) = 1), let J(, q) be the
operator
Aoy R(p) = RE —2» R R (q)

where ¢ = ht(p) (cf. [EZ] Ch. I §1.2). For an element t € A let 9p: R* — R’ be
the operator of degree 1:

(2.1.1) A=Y Opa
teq—p
where (p, q) runs over the saturated chains.
Through the end of Section 2, t = (¢1,...,t4) is a fixed system of parameters
in A. Since the ring A is catenary, according to [Ma] (12.I) Thm. 18 and (12.K)
Prop., the following condition is satisfied:

Let a C A be an ideal generated by c¢ elements of {t1,...,t4}.

2.1.2
( ) Then any minimal prime p over a has ht(p) = c.

Given an element s € A, the localization of an A-module M with respect to
powers of s shall be denoted by M,. Consider the exact sequence of complexes

2.1.3 0—-TgR -R —R, -0,
() s

where I,y is the submodule of elements annihilated by some power of the ideal
(s). The sequence {2.1.3) is canonically split (as graded A-modules, not as com-
plexes !); in fact

R

LR

®s¢p R(p)
D, R(p)-

Let 95 be the coboundary operator of the localized complex R,. The operator

R 1R

Jjs) of (2.1.1) is an A-linear homomorphism J,;: R; — T'(,yR’; it “goes across
the boundary”: from the open set {s # 0} to the closed set {s = 0} in Spec A.
From the condition (2.1.2) on our d-tuple t = (¢1,...,tq), it follows that if p
is a prime of A s.t. ht(p) = c and ty,...,t. € p, then t.41,...,t4 ¢ p. Therefore
(214) F(th_,_,tc)Rc - Rc

tetrta
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Suppose we are given an A-module M, and a homomorphism n: M — R?, such
that 8 oy = 0. We may view 7 as a homomorphism of complexes n: M — R".
Since no t; lies in any prime p of A with ht(p) = 0, we can localize with respect
to ¢y ---tq to get g M.y — RY ., =R

Choose some u € My, ...;,, and define

up = n(u) € RO,

2.1.5 .
( ) u; = a[til(ui_l) eER;i=1,...,d.

Therefore u; = 9,y o0y, o n(u), and in particular u; € F(tl,“_‘ti)’Ri C
R}

it1td”

LEMMA 2.1.1: Fori=1,...,d one has u; = O¢, ..ty (i1) € RE,, | 4,

Proof: The proof proceeds by induction on i. If i > 2 we may assume that
Ui—1 = O...t,(Ui—2). Let p € Spec A have ht(p) = i, and let 8:;—1: Rf,_l —
R(p) be the localization of §*~1: R*"! — R at p. We must show that if
t1,...,ti—1 Epbutt;,...,tq ¢ p, then 8;_1(ui_1) = 0. But 8:,'1 factors through
ot R, - RE L, Ifi=1then

ivtg” d

8?1“-t&(u0) = 8?1~~~ld ° n(u) = 0;

and if 7 > 2 then
az:.l.td (Ui—-l) = azl_ltd o 82‘—2“ (’U.i_g) =0

since (R;,..4,,0%,...t,) is a complex. |

2.2 KoszuL-RESIDUAL COMPLEXES. Let (A,m), (R',8), t = (¢1,...,ta)
and n: M — R° be as in Subsection 2.1. Let K'(t;) be the complex --- — 0 —
A—+ A;, > 0— ... with A in dimension 0. The complex K'(t) is the tensor
product K'(t1) ®4 -+ - ®4 K'(t4) (cf. [LS] §3). It is the direct limit of the Koszul
complexes K'(t™; A), as m — co. Denote the coboundary operator of K'(t) by
d. According to [LS] Lemma (3.2.1), for any complex N° € D*(A), the inclusion
TwN" C N 2 K%t)®4 N induces an isomorphism R[nN° = K((t)®4 N in
D*(4), natural in N'. Taking N" = M, one gets an isomorphism

HL(M) = H*RTuM 5 HY (K (t) @4 M).



342 P. SASTRY AND A. YEKUTIELI Isr. J. Math.

It turns out that this isomorphism differs from the one in [LC] Thm. 2.3, by a
factor of (—1)?; see [Sa]. Hence given an element m € M, the generalized fraction

m
t

We are interested in the complex K'(t) ® 4 R'. By definition,

K@®oaR)" = B KOoR = P D R, .

i+j=n +j=n <<

€ HE (M) is sent to the class (—1)4t]'®--- @7 ' @m] € HYK (t)©4 M).

and the coboundary D is given by:

= Y d'el+(-1)10d.

i+j=n

LEMMA 2.2.1:  Let ug, uq be the elements of R' defined in formula (2.1.5).
Consider them as elements of (K’ (t)® AR ")? as follows: ug € R? ., =K% (t)®4
RO; and uy € R? = K°(t) 4 Re. Then

<d + 1)
up— ()N 2 Juge (K (t)@aR)
is a coboundary.

Proof: Consider all u; as elements of (K'(t) ®4 R )%

u; € RE CK¥Ht)®@4 R ; i=0,...,d

titi---td

Define

vit=u €RE, ., CKTTHE) QAR i=0,...,d— 1.

By Lemma 2.1.1, (1® 8)(vi—1) = u;. On the other hand, since u; € ', +)R%,
it follows that

(d ®1)('Uz‘) c Ri C Ki+1(t) @4 Rd-—i—l’

o (d®1){v;) = u;. Thus
D(v;) = (d®1)(vi) + (~1)(1 ® 8)(v3) = wira + (—1)'us

and u;41 = (—1)"*1y; (mod coboundaries). |
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THEOREM 2.2.2: Consider the homomorphism H&(n): H(M) — HL(R') =
R(m) induced by n: M — R’. For any m € M one has

d
H(n) ([T}) = (—1)<2)3[td] o---0dp, 0N (tl -T-n‘td> .

Proof: Set u := tl_l--otglm € M,;, ..., and define uo,...,uq as in formula
(2.1.5). By definition,

[T] = (-1)%[u] € HYK (t) ©®4 M) 2 Hy, (M),

where [u] is the cohomology class of the cocycle u € K%(t) ©4 M. Thus we see

that H%(n)([T]) = (—1)%ug] € HYK (t) ®a M). According to Lemma 2.2.1,

d+ 1)
[UO] = (—1)( 2 [Ud] S Hd(K(t) QA R) But Ug = 8341 0:+++0 8[t1] o T](u) (S
R(m), and under the isomorphism R(m) = HY(K'(t)®4 R '), we have uq + [ug].
|

2.3 PROOF OF THEOREM 0.2.10.  Let A := Ox ,, which is a local domain of
dimension c. Set (R',8) := (K ,,6x 2 )[-n]; s0 R = K;{;‘ and 9 = (-1)""6x .
This is a residual complex over A satisfying the assumptions of §2.1. Take M :=
Wx o and let n: M — RY be NX,c: WX,z = IC)_(T;. Now for any saturated chain
£ =(zo,...,xc) in X we have d(,__, ¢,)0"*00(zg,z;) = (—=1)“"8¢. So from Thm.
2.2.2 we get

oo ([2]) = 0o ()
MOSS (i) -

tyo-ot
€l(zit) 17ite

3. Comparing Local Cohomology Residues to Parshin Residues

3.1 FracTiON FIELDS OF COMPLETE LOCAL RINGS. In this subsection
we consider a field L, which is the fraction field of a complete, local, integral
k-algebra A, and has the “m-adic topology”. We prove that given a finite ex-

tension K — L of such fields, there is a trace map on separated differential
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forms: Trpx : QZ’ﬁp — Q;(’s/ekp. This trace map is compatible with other known
trace maps. Some familiarity on the part of the reader with [Ye] Sections 1-2 is
assumed.

Let k be a perfect field, and let (4, m) be a complete, noetherian, local k-
algebra. Assume that A is residuaily of finite type, i.e. A/m is a finitely gener-
ated field extension of k. Put on A the m-adic topology. Then A is a Zariski
semi-topological (ST) ring, as defined in [Ye] Def. 3.2.10. In fact, on any finitely
generated A-module, the fine A-module topology is the same as the m-adic topol-
ogy. If A — B is a finite, local homomorphism between two such algebras, then
as an A-module, B has the fine A-module topology.

Let QZ’;? be the separated algebra of differential forms of A relative to k.
Recall that A is said to be differentially of finite type over k, if Q;’;‘Lp is a
finitely generated A-module, with the fine topology. Since the multiplication
map Qi{ﬁp Ra - ®a Qi{;ip — Q7P is a strict epimorphism for every n (cf. [Ye]
Def. 1.5.3), it follows, by ibid. Lemma 1.2.12, that Q:";ip is finitely generated
over A and has the fine topology too.

LEMMA 3.1.1: The algebra A is differentially of finite type over k. Hence QX;Z”

is the universally finite differential algebra of A/k, in the sense of [KD].
Proof: Choose a surjective local homomorphism of k-algebras f: K{[t]] — 4,
where K[[t]] = K[[t1,--.,%x]] is a ring of formal power series. By [Ye] Cor. 1.5.19,

K|[[t]] is differentially of finite type over k. Since K[[t]] ®i K|[t]]>A ® A is a
strict epimorphism of ST k-modules, so is Q}(S[Ffi] e QL5P Therefore Q}Q’jip

AJk
is finitely generated and has the fine A-module topology. According to [Hul]
Remark 2.5, Q;’;i” is the universally finite differential algebra of A/k. [ |

Now assume in addition that A is an integral domain, and set L := Frac(A).

Put on L the fine A-module topology; this makes L into a ST ring.

LEMMA 3.1.2:

1. L is a separated ST k-algebra.

2. QZ’?ZP =L®4 ﬂ;’;‘;", and this is a free ST L-module.

3. Ifchark = p > 0, then Q}:‘;Zp =90}, =0z

4. ranky, Qi’;zp = dim A + rank 4/, Q%A/m)/k.
Proof: (1) Choose a noether normalization: a finite, injective, local, k-algebra
homomorphism K[[t]] = K[[t1,...,ts]] — A, and let M := Frac(K][[t]]). Since
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A has the fine K([[t]]-module topology, it follows that L has the fine M-module
topology, so it is a free ST M-module. Therefore it suffices to prove that M
is separated. This in turn is a consequence of the existence of an injective,
continuous homomorphism M — K((t1,...,t,)), since K((¢1,...,t,)) is known
to be separated.

(2) The homomorphism A — L is topologically étale, by [Ye] Prop. 1.5.8. Now
use Thm. 1.5.11 of [Ye|, Lemma 3.1.1 and Part (1) of this lemma.

(3) Let M be as above. Then M{P/K) = Frac(K®/®[[t? ... 2]]) C L®/*) and
L has the fine M (P/*)-module topology. From here on it is a standard positive
characteristic argument (cf. [Ye] Cor. 2.1.15).

(4) The formula holds for M, and hence for any finite extension thereof (if
char k = p use Part (3)). |

ProposITION 3.1.3: Let A and B be integral, complete, noetherian, residually
of finite type, local k-algebras, and let A — B be a finite, injective, local, k-
algebra homomorphism. Set K := Frac(A) and L := Frac(B). Then there is
a trace map Try /g QZ’/S?’ — Q}f/‘jcp, satisfying axioms T1, T2 and T3 of [Ye)
Prop. 2.3.2. Hence Tr; ;i coincides with Kunz’s trace map of [KD] §16 (cf.
Lemma 3.1.1).

Proof: First note that any finite extension K’ of K is of the form Frac(A’) for
some finite, local homomorphism A — A’. Now we may use the previous lemmas
and the proof of [Ye] Prop. 2.3.2 to define (and uniquely determine) Try /K- Since
the trace map is compatible with the projection Q* e Q*_’jip, it coincides with
the trace of [KD]. n

3.2 SPECTRA OF COMPLETE LOCAL RINGS.  In this subsection we pass to
topological local fields (TLFs). This is done by the Beilinson completion method,
cf. [Ye] §3. Let A and B be complete, noetherian, residually of finite type, local
k-algebras, and let A — B be a finite, local, k-algebra homomorphism. Set
X = Spec B and Y = Spec A. Given an A-module M and a chain 7 in Y,
denote by M the Beilinson completion of the sheaf Oy ® M along 4. This is a
ST A-module (cf. [Ye] §3.2). Say 9 is the closed point of Y. Then Oy g =A
as ST rings. Therefore, if M is a ST A-module with the fine topology, and if
7= (..., %), then the natural map M — Mj, is continuous. (In fact, M — My is
a homeomorphism, by [Ye] Prop. 1.2.20 and Cor. 1.2.6.) Suppose ff = (§o, - - -, iin)
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is a maximal chain in Y, and suppose £ = (&0, ...,2n) is a chain in X lying over
7 (s0 £ is necessarily maximal). The fields k(go) and k(&) are topologized, and
by Prop. 3.1.3 there is a trace map Try(z,)/i(g) Q;’(S;:)/k — Qk(y y/k- On the
other hand, by [Ye| formula (2.3.10), there exists a trace map on the clusters of

. . (O%.Sep *,5ep
TLES, Trygy k) * Ciieyyn — einy/e:

PROPOSITION 3.2.1: The diagram below commutes:

*,5ep . *,sep
Diolso Pilzo)/ = D Uiy

Tr Tr
*,5€ep —_ *,5ep
elio)/k ay/k

Proof: One has [, k(€)= (T 20180 )% (Z0) ®k(g0) £(71) and Q) if;;k = k(£) ®r(z0)

QZ’(?OP)/,C for £ = (Zo,...). Now use the axioms. [ |
Finally, here is:

Proof of Thm. 0.2.9: Take B := Ox y = Ox, and A := K[[t]] = K[[t1,...
tc]]- There is a finite morphism X - f’, and a flat morphism X — X. Let 7; € Y

b

be the prime ideal §; := (¢1,-..,t:), 50 7 := (Yo, - - -, Jc) 1S a maximal chain in Y,
and k() = K((t)) = K((tc))---((t1)). A chain é = (&,...,&) in X lies over
the chain 4 in ¥ iff £ lies over some chain £ in X such that £|(z;t). Cor. 3.3.13
of [Ye] says that there is a canonical isomorphism of clusters of TLFs:

(1) IT =©= I [Tk =]]*&

i{xst) Ei(zit) £ie £ln

Since B is a reduced ring, its total ring of fractions Frac B = k(X) equals
[1;, #(20), the product running over the generic points of X. According to [Hu2]

§1, Try x)/u(v) (@) € Q?f[i‘]’]/k. Therefore

Ty /009y (@) = D Tri(ao)/k(a)(@) = D B Athdty A+ Adte

Zo]J0 i€N
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for some f; € Q'}(_/z, where t& := tit ... i<, By definition, ResLJS{ [tl o t ] =
yeeate

B(o,...,0- On the other hand,

[EZ]

[HK1]

[HK?2)

[HS)

[Hul]

[Hu?]

(84 [84
Z Resg, (tl"'tc> = 2 Resi(e)/ K (tl---tc)

£l(ws;t)

&l(=st)
o
~ Y Resyen <t1 L .tc> by (3.2.1)
£ln
[0
= Resk(;,)/K o Z Tl"k(a”co)/k(ﬁo) ty---t
Zold0 ‘

= Resgt))/x (Bo.....0) Adlogty A--- Adlogt.)
()
=(-1) 2 Bo....,0)- L]
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